

Elvacite® 2014

Acrylic Resin

Elvacite® 2014 is a medium molecular weight methyl methacrylate copolymer. This product is among the softest and most flexible of the Elvacite® copolymer grades. It provides good pigment wetting. Elvacite® 2014 is useful in clear, translucent or pigmented metal lacquers. It is also useful in "Electrofax" copy paper coatings and seamless flooring.

Performance Features and Key Benefits

- Clear, translucent or pigmented metal coatings.
- Pigmented coatings to improve pigment wetting.
- Seamless floors.

Typical Properties ^a							
Appearance	Solid bead						
Specific Gravity, 25° C	1.14						
Glass Transition Temp, onset (calculated)	38°C						
Molecular Weight (Mw)	130,000						
Acid Number (mg KOH/g Resin)	12						
Tensile Strength, psi	3,500						
Elongation at break (23° C, 50% RH)	18%						

Typical physical properties listed are approximate values and should not be considered manufacturer's release specifications. Manufacturer's release specifications are subject to change without notice, please contact your Elvacite® representative for the latest product specification details.

Storage & Handling

Elvacite[®] 2014 should be stored in a cool, dry place away from heat sources. If possible, do not store at or above the glass transition temperature as resin blocking can occur. If a resin block is formed, extra time and care must be taken to break up the mass for use. Please consult the Material Safety Data Sheet for additional safety information.

Preparing Solutions

Elvacite® resins dissolve at room temperature but require constant agitation to prevent solvent-swollen granules of polymer from forming agglomerates and sticking to the walls of the vessel. Important: The polymer beads should be sifted directly into the vortex of the stirred solvent to speed wetting-out and dispersion. Continuous low-shear agitation for periods of 1-12 hours, depending on the grade and concentration of resin, is recommended.

After the solution appears clear in the tank, a sample should be spread out on a Leneta card or glass. After the solvent evaporates and a film forms on the card or glass, there should not be any resin seeds. If there are any seeds, the tank should be agitated further to fully dissolve the resin. Tank agitation should not be stopped (except for sampling) until the film test indicates there are no resin seeds. Any cloudiness or residue may indicate that some polymer remains undissolved. The presence of water in the system can also cause cloudiness.

Solution time can be reduced by heating; most common solvents can be heated to approximately 49°C (120°F) without the need for reflux equipment. High-shear agitation also cuts dissolving time, but requires care to avoid overheating and excessive solvent loss.

Solvent Solubility at 20% solids

Alcohols		Ethyl acetate	С	Ketones	
Methyl Alcohol	1	Isopropyl acetate	С	Acetone	С
Ethyl Alcohol	I	n-butyl acetate	С	Methyl Ethyl Ketone	С
n-propyl Alcohol	1	n-amyl acetate	С	Methyl Isobutyl	С
				Ketone	
Isopropyl Alcohol	1	Butyl lactate	С	Diisobutyl Ketone	С
Isoamyl Alcohol	1	Propylene glycol	Н	Cyclohexanone	С
		monoethyl ether			
		acetate			
Cyclohexanol	I	Methyl amyl acetate	Н	Isophorone	С
Ethylene glycol	I			Diacetone Alcohol	С
Glycerol	1	Ethers		Methyl amyl ketone	С
		Diethyl Ether	1		
Amides		Diisopropyl ether	1	Nitrile	
Formamide	1	Tetrahydrofuran	С	Acetonitrile	С
		(THF)			
Dimethyl formamide	Н	"Cellosolve" Solvent	С		
(DMF)					
				Nitroparaffins	
Chlorohydrocarbons		Hydrocarbons		Nitromethane	С
Methylene Chloride	С	Toluene	С	Nitroethane	С
Ethylene dichloride	С	Xylene	С		
Perchloroethylene	С	n-Hexane	1	Vegetable Oils	
1, 1, 1-	1	Cyclohexane	1	Castor oils	I
Trichloroethane					
		VM & P Naphtha	1	Linseed oils	I
Esters		Turpentine	1		
Methyl formate	С				
(C	= Clea	r Solution, H = Hazy Solu	tion, I =	Insoluble)	

Resin Compatibility

Elvacite® 2014 is compatible with the following Elvacite® Resin Grades: 2013, 2016, 2028, 2042, and 2043. It is also compatible with the other types of resins, as illustrated in the following table:

		Form of Blended		Elvacite / Blending Resin			
Blending Resin	Description	Resin Tested	Supplier				
				(by so	olids we	eight)	
Alkyd				75/25	50/50	25/75	
Aroplaz 1271	Long linseed drying oil	30% in MEK	Spencer	Н	Н	Н	
		50% III WEK	Kellogg	П		П	
Aroplaz 1351	Long castor nondrying	200/ in MEK	Spencer		((
	oil	30% in MEK	Kellogg				

Chempol 13-1410	Safflower drying oil, acrylate mod.	50% in Xylene	Freeman Chemical		Н	Н
Paraplex RG-2	Nondrying oil, sebacic	30% in MEK	Rohm & Haas Co.	Х	С	С
Plaskon 3105	Short coconut nondrying oil	60% in Xylene	Cargill, Inc.		Н	Н
Cellulosic						
Cellulose acetate 39-5-5B		30% in Acetone or MEK	Hercules Inc.		I	I
Cellulose Acetate Butyrate, 1/2 - sec.		30% in MEK	Eastman Chemical	С	С	С
Ethyl Cellulose N-7		30% in MEK	Hercules Inc.	I	I	I
Nitrocellulose "RS", ½-sec Isopropyl		MEK/alcohol soln.	Hercules Inc.	С	C	С
Ероху						
Epon 828		100% Resin	Shell Chemical Co.			I
Epon 1001		30% in MEK	Shell Chemical Co.	Н	Н	Н
Elastomers						
EMD-504	Polyisobutylene	30% in Toluene Exxon Chemical		I	Ι	I

Hypalon 30	Clorosulfonated polyethylene	15% in Toluene	Dupont Polymers	I	I			
Neoprene AC-Soft	Polychloroprene	15% in Toluene	Dupont Polymers	1	I			
Rosin Derivatives								
Ester Gum 8L		30% in MEK	Hercules Inc.	С	Н	Н		
Pentalyn 255	Pentaerythritol ester	30% in MEK	Hercules Inc.	Н	Н	Н		
Pentalyn 830	Pentaerythritol ester	30% in MEK	Hercules Inc.	Н	Н	Н		
Vinyl Chloride Resins								
Bakelite VAGH	Copolymer	30% in MEK	Union Carbide	Х	Х	Х		
Bakelite VMCH	Copolymer	30% in MEK	Union Carbide	Н	Х	С		
Bakelite VYHH	Copolymer	30% in MEK	Union Carbide	С	С	С		
Bakelite VYNS	Copolymer	15% in MEK	Union Carbide	I	Н	С		
Exon 450	Copolymer	15% in MEK	Firestone Plastics	I	Н	С		
Exon 9290	Homopolymer	15% in THF Firestone Plastics						
Geon 103 EP	Homopolymer	15% in THF	B.F. Goodrich					
Other Types								
Arochem 650	Maleic-modified hard resin	30% in MEK	Spencer Kellogg	С	С	С		
Aroset 4110	Acrylic resin	30% in MEK	Spencer Kellogg	С	С	С		
Dammar		30% in Toluene		1	1	I		
DC-840	Silicone resin	60% in Toluene	Dow Corning Corp.	С	С	С		
Parlon S 10	Chlorinated rubber	30% in MEK	Hercules Inc.	С	С	С		
Piccoumaron	Coumarone-indene resin	30% in MEK	Hercules Inc.	Н	Н	Н		
Santolite MHP	Sulfonamide- formaldehyde	30% in MEK	Monsanto Co.	Н	Н	Н		
Shellac		30% in Methanol		I	I	I		
Super-Bechacite 2000	Permanently fusible phenolic	30% in MEK	Reichold		С	С		
Uformite MX-61	Triazine-formaldehyde resin	-formaldehyde 30% in MEK Rohm & Had Co.		С	С	С		
(C= Clear solution, H = Hazy solution, I = Insoluble)								

Viscosity

Table I illustrates typical viscosities of Elvacite® 2014 by varying both solvent and resin concentration.

Table I: Elvacite® 2014 Viscosity (cP)								
	Concentration (% Solids)							
Solvent 20% 30% 40%								
Toluene	70	525	6500					
Methyl Ethyl Ketone	12	80	220					
Isopropyl Acetate	30	220	380					
Cellosolve Solvent	80	600	7000					

Typical Formulation

The following formulation is given as a starting point only. The final formulation will be determined by the coating properties desired.

White Lacquer for Plastics (#C2-4)

Ingredients	% by Wt
Elvacite® 2014	6.0
Ethyl Acetate	9.8
Isobutyl Acetate	14.0
Propylene Glycol Monoethyl Ether Acetate	10.0
½ sec Butyrate	6.0
Sucrose Acetate Isobutyrate	3.0
"Ti-Pure" R-960	5.0
Toluene	46.20
	100.00
DVC 0/	0.0
PVC, %	8.9
Solids, % by wt.	20.0
Solids, % by volume	13.4

Preparation: Dissolve ½ sec butyrate and sucrose acetate isobutyrate in ester solvents and combine with Elvacite® dissolved in Toluene. Add pigment and disperse.

COMPLIANCE WITH FDA REGULATIONS revised April 1, 2019

Pasadena, Texas, USA Grade: ELVACITE® 2014

Issue date: December 2019

We, MITSUBISHI CHEMICAL AMERICA, INC., Specialty Resins Division, confirm that Elvacite® 2014 complies with the compositional requirements of the following United States of America's Food and Drug Administration (FDA) regulations.

Elvacite® 2014 is cleared for use under the FDA 21 CFR 175.105 for adhesives used as components of articles intended for use in the packaging, transporting, or holding food.

Elvacite® 2014 is cleared for use under FDA 21 CFR 175.300 in resinous and polymeric coatings used as the food contact surface of articles intended for use in producing, packing, processing, preparing, treating, packaging, transporting, or holding food. The coating in its finished form in which it is to contact food is subject to a restriction on its chloroform soluble extractives.

Compliance with the limitation on extractives can only be demonstrated by tests carried out in the final article.

Elvacite® 2014 is cleared for use under FDA 21 CFR 175.320 in resinous and polymeric coatings for polyolefin films, provided it is intended for repeated food contact use as specified in FDA 21 CFR 175.300(a).

The coating in its finished form in which it is to contact food is subject to a restriction on its chloroform soluble extractives.

Compliance with the limitation on extractives can only be demonstrated by tests carried out in the final article.

Elvacite® 2014 is cleared for use under FDA CFR 176.170 as a component of the uncoated or coated food contact surface of paper and paperboard intended for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting or holding aqueous and fatty foods.

Compliance with the limitation on extractives can only be demonstrated by tests carried out in the final article.

Elvacite® 2014 is cleared for use under FDA 21 CFR 176.180 as a component of the uncoated or coated food contact surface of paper and paperboard intended for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding dry food.

Elvacite® 2014 is cleared under FDA 21 CFR 177.1010 as semirigid and rigid acrylic plastics articles intended for use in contact with food. The semirigid and rigid acrylic plastics in the finished form in which they are to contact food are subject to limitation on extractives

Compliance with the limitation on extractives can only be demonstrated by tests carried out on the final article.

This statement of compliance is correct at the date of issue.

As food contact regulations and product formulations are subject to change, it is the user's responsibility to ensure that they are in possession of a current statement of compliance.

Pasadena, Texas, USA

Issue date: January 2022

Mitsubishi Chemical America, Inc., Specialty Resins Division hereby certifies that the country chemical inventory status of Elvacite® 2014 is as follows.

US	CA	AU	CN	KR	NZ	PH	TW	JP	Russian	TH	Vietnam
									Federation		
TSCA	DSL	AIIC	IECSC	KECI	NZIoC	PICCS	TCSI	ENCS	Unified	DIW	NCI
									list of		
									chemicals		
Listed as	V	V	V	γ	V	V	V	V	V	V	V
Active	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Y: Listed

N: Not Listed

For further information or samples, please contact your local distributor, or:

Mitsubishi Chemical America, Inc.

Specialty Resins Division 9675 Bayport Blvd. Pasadena, Texas 77507 Phone (713)758-8190 www.m-chem.com/specialtyresins MCA-SPR.sales@m-chem.com

The recommendations, suggestions and data contained herein are believed to be true and accurate as of the time of printing. Mitsubishi Chemical America, Inc. does not represent, warrant or guarantee the completeness or reliability of the same, since the conditions of use, including in combination with other products, are beyond our control and can affect the performance and properties of our products. The user is solely responsible for confirming that our product is suitable for the intended end use, and for compliance with all legal regulations and patents. Other than compliance with published Mitsubishi Chemical America, Inc. specifications for the warranty period if properly handled, and except as required by law, MITSUBISHI CHEMICAL AMERICA, INC. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, ORAL OR WRITTEN, ARISING BY LAW, CONTRACT, STATUTE OR OTHER LEGAL THEORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If a product is found to be defective during the warranty period, user's sole remedy and our sole obligation is, at our option, replacement of the affected product or refund of the purchase price. Except as required by law, we are not liable for any damage, harm or loss resulting from our product, whether direct, indirect, consequential, incidental or special, and irrespective of legal theory asserted, including strict liability, contract, warranty, or negligence.