

Hazard Alert Code: MODERATE

ERAPOL CO. 9-50966 Version No:1 Page 1 of 12

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

ERAPOL EMD96A

PRODUCT USE

Used according to manufacturer's directions. POLYURETHANE PREPOLYMER

SUPPLIER

Company: Era Polymers Pty Ltd

Address:

25-27 Green Street, Banksmeadow, NSW 2019, Australia

Telephone: +61 2 9666 3788 Emergency Tel:1800 039 008 (AUS) Emergency Tel:+80024362255 (INTL)

Fax: +61 2 9666 4805 Email: erapol@erapol.com.au

Website: ~

Section 2 - HAZARDS IDENTIFICATION

GHS Classification

Carcinogen Category 2
Eye Irritation Category 2A
Respiratory Sensitizer Category 1
Skin Corrosion/Irritation Category 2
Skin Sensitizer Category 1
STOT - RE Category 2
STOT - SE (Resp. Irr.) Category 3

Hazard Alert Code: MODERATE

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

ERAPOL CO. 9-50966 **Version No:1** Page 2 of 12 Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

HAZARD

DANGER

Determined by Chemwatch using GHS criteria

H315 Causes skin irritation.

H317 May cause an allergic skin reaction. H319 Causes serious eye irritation.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H335 May cause respiratory irritation. Suspected of causing cancer. H351

H373 May cause damage to organs through prolonged or repeated exposure.

PRECAUTIONARY STATEMENTS

_				
Э	re۱	10	nti	n

Code Phrase

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read and understood.

P260 Do not breathe dust/ fume/ gas/ mist/ vapours/ spray. P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.

P264 Wash ... thoroughly after handling.

P271 Use only outdoors or in a well- ventilated area.

P272 Contaminated work clothing should not be allowed out of the workplace.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

P281 Use personal protective equipment as required.

P285 In case of inadequate ventilation wear respiratory protection.

Response

Code

P302+P352 IF ON SKIN: Wash with plenty of soap and water.

P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position

comfortable for breathing.

IF INHALED: If breathing is difficult, remove victim to fresh air and keep P304+P341

at rest in a position comfortable for breathing.

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove

contact lenses, if present and easy to do. Continue rinsing. IF exposed or concerned: Get medical advice/attention.

P308+P313 P312 Call a POISON CENTER or doctor/physician if you feel unwell.

P314 Get medical advice/attention if you feel unwell. P332+P313 If skin irritation occurs: Get medical advice/attention. P333+P313 If skin irritation or rash occurs: Get medical advice/attention. P337+P313 If eye irritation persists: Get medical advice/attention.

P342+P311 If experiencing respiratory symptoms: Call a POISON CENTER or

doctor/physician.

P362 Take off contaminated clothing and wash before re-use.

P363 Wash contaminated clothing before reuse.

Storage

Code **Phrase**

P403+P233 Store in a well- ventilated place. Keep container tightly closed.

Store locked up.

P405 Disposal

Code **Phrase**

P501 Dispose of contents/container to ...

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN %

Polyurethane Prepolymer > 60

10 - 30 4, 4' - diphenylmethane diisocyanate (MDI) 101-68-8

Other ingredients determined non hazardous

Hazard Alert Code: MODERATE

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

ERAPOL CO. 9-50966 Version No:1 Page 3 of 12

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.

NOTES TO PHYSICIAN

Treat symptomatically.

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitizer which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnea.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- Flooding quantities of water only.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.

FIRE/EXPLOSION HAZARD

- Combustible.
- Moderate fire hazard when exposed to heat or flame.
- When heated to high temperatures decomposes rapidly generating vapor which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapor.
- Burns with acrid black smoke and poisonous fumes.

Combustion products include: carbon dioxide (CO2), isocyanates, and minor amounts of, hydrogen cyanide, nitrogen oxides (NOx),

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP **Hazard Alert Code: MODERATE**

ERAPOL CO. 9-50966 Version No:1 Page 4 of 12 Section 5 - FIRE FIGHTING MEASURES

other pyrolysis products typical of burning organic material. May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- Clean up all spills immediately.
- · Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.

MAJOR SPILLS

For isocyanate spills of less than 40 litres (2 m2):

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- · Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- Control source of leakage (where applicable).
- Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add
 neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume).
 Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff
 bristle brush, using moderate pressure. Completely cover decontaminant with vermiculite or other similar absorbent. After 5
 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A:

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100%

Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8% water to 100%

Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100%

After application of any of these formulae, let stand for 24 hours.

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP **Hazard Alert Code: MODERATE**

ERAPOL CO. 9-50966 Version No:1 Page 5 of 12 Section 6 - ACCIDENTAL RELEASE MEASURES

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- · Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- Open all containers with care.

Moderate hazard.

- · Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin.
- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

SUITABLE CONTAINER

- Metal can or drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

STORAGE INCOMPATIBILITY

- Avoid reaction with water, alcohols and detergent solutions.
- Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming in confined spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- Do NOT reseal container if contamination is expected
- Open all containers with care
- Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- Isocyanates will attack and embrittle some plastics and rubbers.
- A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition.

STORAGE REQUIREMENTS

for commercial quantities of isocyanates:

- Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP Hazard Alert Code: MODERATE

ERAPOL CO. 9-50966 Version No:1 Page 6 of 12 Section 7 - HANDLING AND STORAGE

- Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of
 unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- · Store in original containers.
- · Keep containers securely sealed.
- · No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US ACGIH Threshold Limit Values (TLV)	4, 4' - diphenylmethane diisocyanate (MDI) (Methylene bisphenyl isocyanate (MDI))	0.005							TLV® Basis: Resp sens

MATERIAL DATA

4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI):

ERAPOL EMD96A:

for diphenylmethane diisocyanate (methylene bisphenyl isocyanate; MDI)

Odour Threshold Value: 0.39 ppm

IDLH Level: 10 mg/m3

Mean MDI exposures of less than 0.003 ppm appear to have no acute or chronic effect on pulmonary function.

MDI produces identical toxicological responses to those produced by TDI and the recommended TLV-TWA is identical for the two isocyanates. Exposure at or below the recommended value is thought to protect the worker against pulmonary function decrements as well as to minimise the potential for respiratory tract sensitisation. Individuals who may be hypersusceptible or otherwise unusually responsive to exposure to certain industrial chemicals may not adequately protected from adverse health effects caused by MDI at the recommended TLV-TWA. Ceiling values recommended by NIOSH and OSHA are synonymous with normal excursions allowable for exposures to the TLV-TWA (in excess of 3 x TLV-TWA for no more than a total of 30 minutes during a work day but in any case not exceeding 5 x TLV-TWA).

PERSONAL PROTECTION

RESPIRATOR

•Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

FYF

- · Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

Hazard Alert Code: MODERATE

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

ERAPOL CO. 9-50966

Version No:1

Page 7 of 12

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

- · frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- · Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

■ Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. NOTE: Isocyanate vapors will not be adequately absorbed by organic vapor respirators.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

MILKY LIQUID; REACTS WITH WATER.

PHYSICAL PROPERTIES

Liquid.

State	Liquid	Molecular Weight	Not Available
Melting Range (°F)	Not Available	Viscosity	Not Available
Boiling Range (°F)	Not Available	Solubility in water (g/L)	Not Available
Flash Point (°F)	Not Available	pH (1% solution)	Not Available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Available
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHg)	Not Available
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	1.05
Lower Explosive Limit (%)	Not Available	Relative Vapor Density	Not Available

(air=1)

Volatile Component (%vol) Not Available Evaporation Rate Not Available

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Hazard Alert Code: MODERATE

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

ERAPOL CO. 9-50966 Version No:1 Page 8 of 12

Section 11 - TOXICOLOGICAL INFORMATION

Health hazard summary table:

Acute toxicity
Skin corrosion/irritation
Serious eye damage/irritation
Respiratory or skin sensitization

Germ cell mutagenicity
Carcinogenicity
Reproductive toxicity
STOT- single exposure
STOT- repeated exposure
Aspiration hazard

Not applicable Skin Irrit. 2 Eye Irrit. 2A Resp. Sens. 1 Skin Sens. 1 Not applicable Carc. 2 Not applicable STOT SE 3 STOT RE 2 Not applicable

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material is not thought to produce adverse health effects following ingestion (as classified using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum.

EYE

■ This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- The vapor/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary edema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia.

CHRONIC HEALTH EFFECTS

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Harmful: danger of serious damage to health by prolonged exposure through inhalation.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Isocyanate vapors are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia.

TOXICITY AND IRRITATION

~OTHER

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP **Hazard Alert Code: MODERATE**

ERAPOL CO. 9-50966 Version No:1 Page 9 of 12 Section 11 - TOXICOLOGICAL INFORMATION

highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Attention should be paid to atopic diathesis, characterized by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. for dispocyanates:

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocyanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic diisocyanates tested positive and the one aliphatic diisocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic diisocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two year repeated dose study in rats by the inhalation route. HDI has not been tested in mice by the inhalation route.

Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic diisocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic diisocyanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone diisocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-4,4'-diisocyanate (HMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocyanates.

Dermal Irritation: Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical, hydrogenated MDI (1,1-methylenebis-4-isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs.

CARCINOGEN

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

Hazard Alert Code: MODERATE

ERAPOL CO. 9-50966 **Version No:1** Page 10 of 12

2

Section 11 - TOXICOLOGICAL INFORMATION

4, 4' -3 International Group Not classifiable diphenylmethane Agency for as to its diisocyanate (MDI) Research on Cancer carcinogenicity (IARC) - Agents to humans

Reviewed by the IARC Monographs US EPA Carcinogens Carcinogenicity

irritation/corrosion

diphenylmethane Listing

diisocyanate (MDI)

SKIN

4, 4' -

4.4'-Canada - British Columbia Occupational Notation Skin; S

diphenylmethane Exposure Limits - Skin

diisocyanate (MDI)

GESAMP/EHS Composite List - GESAMP Hazard

Profiles

D1: skin

diphenylmethane diisocyanate (MDI)

D

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Persistence: Persistence: Air Bioaccumulation Ingredient Mobility Water/Soil

4, 4' - diphenylmethane LOW IOW 1 ()\// IOW

diisocyanate (MDI)

Section 13 - DISPOSAL CONSIDERATIONS

■ Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- DO NOT recycle spilled material.
- Consult Waste Management Authority for disposal.
- Neutralize spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurize containers.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP

Hazard Alert Code: MODERATE

ERAPOL CO. 9-50966 Version No:1 Page 11 of 12

Section 15 - REGULATORY INFORMATION

REGULATIONS

Regulations for ingredients

4, 4'-diphenylmethane diisocyanate (MDI) (CAS: 101-68-8, 26447-40-5) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Objectives", "Canada - Alberta Occupational Exposure Limits", "Canada - Alberta Substances and processes requiring a code of practice", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada - Saskatchewan Occupational Health and Safety Regulations -Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada Categorization decisions for all DSL substances", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that meet the human health criteria for categorization (English)", "Canada Domestic Substances List (DSL)", "Canada Environmental Protection Act (CEPA) 1999 - Schedule 1 Toxic Substances List", "Canada Ingredient Disclosure List (SOR/88-64) (French)", "Canada National Pollutant Release Inventory (NPRI)", "FisherTransport Information", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Air Transport Association (IATA) Dangerous Goods Regulations", "OECD List of High Production Volume (HPV) Chemicals", "Sigma-AldrichTransport Information", "US - Alaska Ambient Air Quality Standards", "US - Alaska Limits for Air Contaminants", "US -Arizona State List of Hazardous Air Pollutants", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for Which Emissions Must Be Quantified", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - California Toxic Air Contaminant List Category II". "US -Connecticut Hazardous Air Pollutants", "US - Delaware Pollutant Discharge Requirements - Reportable Quantities", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Kentucky Listing of Hazardous Air Pollutants", "US -Louisiana Toxic Air Pollutants Supplemental List", "US - Maine Hazardous Air Pollutants List and Reporting Thresholds", "US - Massachusetts - Right To Know Listed Chemicals", "US - Massachusetts Toxics Use Reduction Act (TURA) listed chemicals", "US -Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Environmental Hazardous Substances List", "US - New Jersey Right to Know Hazardous Substances (English)", "US - New York List of Hazardous Substances", "US - North Dakota Air Pollutants - Guideline Concentrations", "US -Oregon Permissible Exposure Limits (Z-1)", "US - Oregon Permissible Exposure Limits (Z-2)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values", "US - Wisconsin Control of Hazardous Pollutants - Emission Thresholds, Standards and Control Requirements (Hazardous Air Contaminants)", "US -Wisconsin Control of Hazardous Pollutants - Substances of Concern for Sources of Incidental Emissions of Hazardous Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US CAA (Clean Air Act) - HON Rule - Organic HAPs (Hazardous Air Pollutants)", "US CAA (Clean Air Act) - HON Rule -Synthetic Organic Chemical Manufacturing Industry Chemicals", "US Clean Air Act - Hazardous Air Pollutants", "US Coast Guard, Department of Homeland Security Part 153: Ships Carrying Bulk Liquid, Liquefied gas or compressed gas hazardous materials. Table 1 to Part 153 --Summary of Minimum Requirements", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA Carcinogens Listing", "US EPA High Production Volume Program Chemical List", "US EPA Integrated Risk Information System (IRIS)", "US EPA Master Testing List - Index I Chemicals Listed", "US EPCRA Section 313 Chemical List", "US FDA List of ""Indirect"" Additives Used in Food Contact Substances", "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory", "US TSCA Section 8 (a) -Preliminary Assessment Information Rules (PAIR) - Reporting List", "US TSCA Section 8 (d) - Health and Safety Data Reporting"

No data for ERAPOL EMD96A (CW: 9-50966)

Section 16 - OTHER INFORMATION

Denmark Advisory list for selfclassification of dangerous substances

Suggested codes R43

4, 4' - diphenylmethane diisocyanate

26447-40-5

Erapol Co. GHS Safety Data Sheet (REVIEW) Oct-22-2013 X!614SP **Hazard Alert Code: MODERATE**

ERAPOL CO. 9-50966
Version No:1
Page 12 of 12
Section 16 - OTHER INFORMATION

(MDI)

INGREDIENTS WITH MULTIPLE CAS NUMBERS

Ingredient Name CAS

4,4'-diphenylmethane diisocyanate (MDI) 101-68-8, 26447-40-5

- Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright

Issue Date: Oct-22-2013 Print Date: Nov-26-2013